
1 November 3, 1998
Brian L. Tierney
Future Technologies Group

Distributed Storage Caches and Distributed
System Performance Analysis Tools

Data Intensive Computing Tutorial

SuperComputing ‘98

Brian L. Tierney (bltierney@lbl.gov)
Future Technologies Group

 Lawrence Berkeley National Laboratory
Berkeley, CA 94720

2 November 3, 1998
Brian L. Tierney
Future Technologies Group

Outline
♦ Overview of Distributed Storage

♦ Data Handling Architecture

♦ Distributed Storage Applications
- Terrain Visualization
- Medical Imaging
- HENP

♦ A Distributed Storage System: The DPSS

♦ Next Generation Architectures

♦ Distributed Systems Performance Analysis
- NetLogger Components
- NTP

♦ Sample Results

3 November 3, 1998
Brian L. Tierney
Future Technologies Group

Distributed Storage

Why is distributed storage important for Data Intensive
Computing?

• Researchers often are not at the same location as the
data source

• Compute cycles are often not at the same location as
the data source or the data archive

4 November 3, 1998
Brian L. Tierney
Future Technologies Group

Distributed Storage

Other Advantages of Distributed Storage:

♦ sharing of resources

♦ fault tolerance / load balancing through replicated data
at multiple sites, where a fault might be:

- host failure
- disk failure
- network failure
- software fault
- network congestion
- excessive CPU load

♦ added flexibility: provides the ability to move the data to
the compute cycles, or move the compute cycles to the
data, depending on network speed

5 November 3, 1998
Brian L. Tierney
Future Technologies Group

Distributed Storage

Total
Archive

Visualization
/ Analysis

Processing
Resources

User Site

Remote Access to Large Data Archives

Data
Source

Partial
Replication

of
Archive

Visualization
/ Analysis

Processing
Resources

WAN

Archive Site

6 November 3, 1998
Brian L. Tierney
Future Technologies Group

Example Architecture for On-line Data Sources

A prototype architecture has evolved from our experiences:
• distributed satellite image processing in MAGIC testbed
• on-line angiography (x-ray video) systems for Kaiser

Hospital
• simulated on-line HENP detectors

Key features of the architecture:
• very high-speed cache that is distributed, scalable, and

dynamically configurable
• common, low-level, high data rate interface that supports

various application I/O semantics
• high-speed tertiary storage interface
• data cataloguing and access system
• distributed management of strong access control

7 November 3, 1998
Brian L. Tierney
Future Technologies Group

Example Architecture

da
ta

 s
ou

rc
e

visualization
and steering
applications

parallel
computational

PKI
access

real-time
data cache

partition

processing
scratch
partition

application data
cache partition

cache:
large, high-speed,

network
distributed (e.g.,

MSS

high data rate interface

hi
gh

da
ta

ra
te h.d.r.

I/O semantics

MSS
MSSMSS (e.g.,
HPSS)

data cataloguing and access system

tertiary
storage “data

mover”

high data rate
interface

A Prototype High Volume, High Data Rate, Data Analysis Architecture

8 November 3, 1998
Brian L. Tierney
Future Technologies Group

Example Architecture

♦ Advantages of this architecture:

• first level processing can be done using resources at
the collaborators sites (this type of experiment typically
involves several major institutions)

• large tertiary storage systems exhibit substantial
economies of scale, and so using a large tertiary
storage system at, say, a supercomputer center, should
result in more economical storage, better access
(because of much larger near-line systems - e.g. lots of
tape robots) and better media management.

9 November 3, 1998
Brian L. Tierney
Future Technologies Group

Distributed Storage Applications

Background:

♦ We first developed a distributed storage system, called
the DPSS (Distributed Parallel Storage System) as part of
the DARPA-sponsored MAGIC Gigabit Network Testbed
(see: http://www.magic.net).

♦ The prototype high-speed application for this system
was TerraVision, developed at SRI.

♦ TerraVision uses tile images and digital elevation models
to produce a 3D visualization of landscape.

10 November 3, 1998
Brian L. Tierney
Future Technologies Group

Distributed Storage Applications

Landscape (large image)
represented by image tiles

kept in the DPSS

TerraVision determines and
predicts the tiles intersected

by path of travel

TerraVision and the DPSS Cooperate to Visualize Landscape

TerraVision produces a
realistic visualization of

the landscape

Path of travel

17
27

11 12 13 14 15 16
21 22 23 24 25 26

31 32 33 34 35 36 37
41

51
61

71

42
52

62
72

43 44 45 46 47
53 54 55 56 57

63 64 65 66 67
73 74 75 76 77

Human user
controls
path of
travel

Multiple DPSS servers at
multiple sites operate in

parallel to supply the
required tiles to TerraVision

The network
delivers

image tiles to
TerraVision

11 November 3, 1998
Brian L. Tierney
Future Technologies Group

Distributed Storage Applications

Medical Imaging Data

♦ The DPSS was used with an LBNL/Kaiser Permanente
collaboration focused on connecting remote, on-line
instrument systems to “real-time” digital libraries.

♦ System characteristics:

• automatic generation of metadata

• automatic cataloguing of the data and the metadata as
the data is received

• transparent management of tertiary storage systems
where the original data is archived (via Unitree NFS
interface)

• facilitation of cooperative research by providing
specified users at local and remote sites immediate as
well as long-term access to the data

12 November 3, 1998
Brian L. Tierney
Future Technologies Group

Distributed Storage Applications

♦ System characteristics (cont.):

• mechanisms to incorporate the data into other
databases or documents

• cardio-angiography data was collected directly from a
Phillips scanner in the San Francisco Kaiser hospital
Cardiac Catheterization Laboratory — when the data
collection for a patient is complete (about once every
20–40 minutes), 500–1000 megabytes of digital video
data was sent across the ATM network to the WALDO
system at LBNL which makes the data available to
physicians in other Kaiser hospitals

• this automated process goes on 8–10 hours a day

13 November 3, 1998
Brian L. Tierney
Future Technologies Group

Distributed Storage Applications

NTON and
BAGNet network

testbeds

Lawrence Berkeley
National Laboratory and

Kaiser Permanente
On-line Health Care
Imaging Experiment

in the
San Francisco Bay Area

LBNL WALDO server and DPSS
distributed cache for data processing,

cataloguing, and storage

Kaiser San Francisco Hospital Cardiac
Catheterization Lab (digital video

capture)

Kaiser Oakland
Hospital (physicians

and databases)

Kaiser
Division of
Research

Automatically generated user
interfaces providing indexed

access to the large data objects
(the X-ray video) and to various

derived data.

14 November 3, 1998
Brian L. Tierney
Future Technologies Group

Distributed Storage Applications

High Energy and Nuclear Physics Data

♦ Data source: The STAR detector at RHIC (Brookhaven
National Lab).

• This detector puts out a steady state data stream of 20-
40 MBytes/second.

♦ This application requires a data handling architecture
capable of supporting the processing and storage of
over 2 TB / day:

15 November 3, 1998
Brian L. Tierney
Future Technologies Group

Distributed Storage Applications

HPSS
(mass Storage

System)

high-speed, distributed random
access cache

detector

interface

archive
management

20 MBy/s

20
MBy/s

2-10
MBy/s

2-10
MBy/s

0.1-2
MBy/s

23-30 MBy/s
(typically twice the
raw data rate, so

40 MBy/s)

analysis

interface

reconstruction

interface

reconstruction

interface

reconstruction

interface

analysis

interface

analysis

interface

this model provides a
standard high-

performance data
interface for all
sources of data

STAR data flow characteristics and prototype data handling model

16 November 3, 1998
Brian L. Tierney
Future Technologies Group

Distributed Storage Applications

HPSS Mass Storage System

Distrib uted-Parallel Storage System servers

Data Placement Optimization
• generate optimal indexing

strategy to organize and re-
organize data layout

• manage third-party transfers to
implement layout

data writer
• implements third-party

transfers to DPSS servers
• implements data placement

data transfer agent
• transfers data to

applications
• implements multi-level

block cache management MSS access methods
memory

disk

network
interfaces

bit-file movers
• implement third-party

transfers from MSS
cache and tape

PDSF / many
small SMP
systems

Incorporation of DPSS
into NERSC physics
analysis computing

cluster

HENP analysis-1 HENP analysis-2 HENP analysis-3

data access
(DBMS, e.g. Objectivity)

(e.g., OOFS)data presentation

block-level transport

data access
(e.g. Malon object manager)

data access methods
(e.g. STAF)

17 November 3, 1998
Brian L. Tierney
Future Technologies Group

Distributed Storage Applications

Current ST AF/DPSS Performance
♦ A recent set of experiments were conducted over the

National Transparent Optical Network testbed — eight
2.4 gigabit/sec data channels around the San Francisco
Bay.

♦ The application network was IP over OC-12 (622 Mbit/
sec) ATM.

♦ An application running on a Sun Enterprise-4000 SMP at
SLAC (Palo Alto) read data from four distributed disk
servers at LBNL (Berkeley), parsed the XDR records and
placed the data into the application memory.

18 November 3, 1998
Brian L. Tierney
Future Technologies Group

Distributed Storage Applications

LBNL

0 5 Mi. 10 Mi.

UC Berkeley

to MAGIC
testbed

tertiary (mass) storage

DPSS: network
parallel disk system

LLNL

SRI Ames

San Jose

OC-12
(622 Mb/s)

SLAC
Fore ASX-1000

ATM switch

NOW

UCSF

Kaiser

Nortel Vector
ATM switch

OC12

OC12 OC12OC12

Sprint ATL
Burlingame

Nortel Vector
ATM switch

OC12 OC3

OC3 OC12

ACTS

SNL

No
rte

l V
ec

to
r

AT
M

 s
wi

tc
h

O
C1

2
O

C1
2

O
C1

2
O

C1
2

NTON
® 8 × 2.5 Gbit/s all optical
network testbed
® network circumference
is about 300km)

Cisco 1010L
ATM switch

OC12

OC12

Sun E4000 SMP

CCCCCCC

CPU
MEM

I/O

Ether
100 mbs

X

ATM
OC-12

ATM
switch

OC-12 data path

OC-3 data path

STAF application
platform

LBNL ↔NTON↔SLAC
experiments: Hardware

configuration

19 November 3, 1998
Brian L. Tierney
Future Technologies Group

Distributed Storage Applications

♦ Results:

• each DPSS server transfer rate is 14.25 MBytes/sec

• OC-12 receiver was able read data from 4 servers in
parallel at 57 MBytes/sec

- this is the rate of data delivered from datasets in a
distributed cache to the remote application memory,
ready for analysis algorithms to commence
operation.

• this is equivalent to 4.5 TeraBytes/day!

• latency for a single 64 KByte data block is 25 ms, so
pipelining is very important

20 November 3, 1998
Brian L. Tierney
Future Technologies Group

Distributed Parallel Storage System

Design Goals:

♦ support data-intensive applications

♦ provide very high data throughput
• parallelism at every level, including disk, SCSI bus, network,

and server

♦ high-speed WAN aware

♦ scalable
• throughput and capacity

♦ economical
• use only low-cost commodity hardware components

♦ location transparency
• location of DPSS servers is transparent to the application

21 November 3, 1998
Brian L. Tierney
Future Technologies Group

DPSS

DPSS Architecture:

♦ A dynamically configurable network-striped disk array
designed to supply high speed data streams to other
processes in the network

♦ Provides the functionality of a single, very large,
random-access, block-oriented I/O device (i.e.: a large
virtual disk)

♦ At the user level, it is a semi-persistent cache of named
data-objects

♦ At the storage level, it is a logical block server

♦ Allows client applications complete freedom to
determine optimal data layout, replication, and dynamic
reconfiguration

♦ The DPSS is NOT a reliable tertiary storage system

22 November 3, 1998
Brian L. Tierney
Future Technologies Group

DPSS

Implementation:

♦ zero memory copies of data blocks, and is all user level
code

♦ runs on Solaris, IRIX, DEC Unix, Linux, FreeBSD, Solaris
X86

♦ very large logical address/name space (16 bytes)

♦ highly distributed, a high degree of parallelism at every
level, and highly pipelined

♦ data blocks are declustered across both disks and
servers to maximize parallelism

♦ supports parallel reading and writing

♦ TCP Transport (UDP data transfers also supported)

♦ highly instrumented

23 November 3, 1998
Brian L. Tierney
Future Technologies Group

DPSS

Architecture for Distributed-Parallel Storage System

ATM
network
interface

DPSS disk server

ATM

workstation

data blocks

ATM switch single high
bandwidth

sink (or
source)

ATM network
(interleaved cell

streams representing
multiple virtual

circuits)

D
P

S
S

se
rv

er

AT
M

C
lie

nt
 a

pp
lic

at
io

n

A
P

I

physical block requests
data

requests

ATM
network
interface

- data structure
server

- data set access
control

- logical name
translation

- block-level
access control

DPSS disk server
workstation

data blocks

DPSS disk server
workstation

data blocks

D
P

S
S

 s
er

ve
r

AT
M

data fragment
streams

returned data
stream

logical block
requests

24 November 3, 1998
Brian L. Tierney
Future Technologies Group

DPSS

logical to
physical
mapping

disk servers

disk servers

disk servers

b
u
f
f
e
r

various
access

semantic

c
l
i
e
n
t

DPSS

requests

data

Distributed-Parallel Storage System Model (Reading)

25 November 3, 1998
Brian L. Tierney
Future Technologies Group

DPSS

generate block
map entries

disk servers

b
u
f
f
e
r

block
placemen

t

c
l
i
e
n
t

DPSS model for high-speed writing

26 November 3, 1998
Brian L. Tierney
Future Technologies Group

DPSS

returned data stream
(“third-party” transfers directly from
the storage servers to the application) Application

(client)
♦ block storage
♦ block-level access

control

Disk Servers

security context - 1
(system integrity &
physical resources)

Application data structure
access methods

(data structure to logical
block-id mappings - e.g.:

♦ JPEG video

♦ multi-res image pyramids

♦ Unix r/w

♦ XDR

data
requests

security context - 2
(data use conditions)

Agent-based
management of dataset
metadata - locations,

state, etc.

Distributed-Parallel Storage System Architecture (data reading illustrated)

Agent-based
management
of redundant

Masters

Agent-based management of
storage server and network state

vis a vis applications

mem

buf

physical
block

requests logical block
requests

Data Set Manager

• user security context
establishment

• data set access control
• metadata

DPSS Master

Request Manager

• logical to physical name
translation

• cache management

DPSS API
(client-side

library)

Resource Manager
• allocate disk resources
• server/disk resource access

control

27 November 3, 1998
Brian L. Tierney
Future Technologies Group

DPSS

♦ Typical DPSS implementation
- 5 UNIX workstations (e.g. Sun Ultra I0s, Pentium 400)
- 4 - 6 Ultra-SCSI disks on 2 SCSI host adaptors
- a high-speed network (e.g.: ATM or 100 Mbit

ethernet)

• This configuration can deliver an aggregated data
stream to an application at about 500 Mbits/s (62 MBy/s)
using these relatively low-cost, “off the shelf”
components by exploiting the parallelism of:

- five hosts,
- twenty disks,
- ten SCSI host adaptors
- five network interfaces

28 November 3, 1998
Brian L. Tierney
Future Technologies Group

DPSS

♦ Sample Costs:

• server host = Sun Ultra 10S: $5000
- throughput = 11 - 14 MB/sec

• disk = 18 GB Ultra-wide Seagate Cheetah: $1500

• Note that cost is mainly dominated by disk price

TABLE 1.

Throughput Capacity Configuration Cost
10 MB/sec 33 GB 1 server, 2 disks $8K
50 MB/sec 165 GB 5 servers, 10 disks $40 K
50 MB/sec 1 TB 5 servers, 64 disks $121 K

100 MB/sec .5 TB 10 servers, 32 disks $98 K
100 MB/sec 1 TB 10 servers, 64 disks $146 K

29 November 3, 1998
Brian L. Tierney
Future Technologies Group

Other Types of Distributed Storage

Other systems that provide distributed storage capabilities:

• AFS

• DCE / DFS

These system provide full file system functionality, plus
security and scalablity.

But, they do not provide enough throughput for data
intensive applications:

• can’t stripe a file across several servers

30 November 3, 1998
Brian L. Tierney
Future Technologies Group

Next Generation Architecture

The next step is to add the following components to this
data handling architecture:

• security

• middleware
- Globus

• global naming
- URN system
- SRB from SDSC

• Other “computational grid” components

31 November 3, 1998
Brian L. Tierney
Future Technologies Group

Next Generation Architecture

Archival Storage
(HPSS, Unitree, Unix files, etc.)

“Network aware” Middleware broker
(CORBA, Java RMI, SRB, etc.)

Application
(processing, analysis, visualization, etc.)

High Performance Data Intensive Computing Environment

Query
Estimator

Placement Optimization

Cache/Buffer
(e.g.: DPSS)

Object Data Base
(Objectivity, ObectStore, etc.)

32 November 3, 1998
Brian L. Tierney
Future Technologies Group

Next Generation Architecture

compute
CPU

CPU

CPU

CPU

Mem
SLAC

compute
CPU

CPU

CPU

CPU

MemLBNL

tertiary storage
(HPSS)

Global Middleware Services

uniform
accessnetwork

cache
QoS

compute
resources

STAF
 Analysis)

monitoring
and

management

tertiary storage
(ADSM)

ANL

compute
CPU

CPU

CPU

CPU

Mem

cache (DPSS)

tertiary storage
(HPSS)

cache (DPSS)

33 November 3, 1998
Brian L. Tierney
Future Technologies Group

Part II: Performance Analysis Tools

34 November 3, 1998
Brian L. Tierney
Future Technologies Group

Overview
♦ The Problem:

When building data intensive distributed services, we often
observe unexpectedly low network throughput and/or high
latency - the reasons for which are usually not obvious.

The bottlenecks can be in any of the following
components:

- the applications
- the operating systems
- the device drivers, the network adapters on either the

sending or receiving host (or both)
- the network switches and routers, and so on

♦ The Solution:
Highly instrumented systems with precision timing
information and analysis tools

35 November 3, 1998
Brian L. Tierney
Future Technologies Group

Motivation

There are virtually no behavioral aspects of widely
distributed applications that can be taken for granted - they
are fundamentally different from LAN-based distributed
applications.

• Techniques that work in the lab frequently do not work
in a WAN environment (even a testbed network)

To characterize the wide area environment we have
developed a methodology for detailed, end-to-end, top-to-
bottom monitoring and analysis of significant events
involved in distributed systems data interchange.

• This has proven invaluable for isolating and correcting
performance bottlenecks, and even for debugging
distributed parallel code.

36 November 3, 1998
Brian L. Tierney
Future Technologies Group

NetLogger

♦ We have developed the NetLog ger Toolkit: a set of tools
to aid in creating graphs that trace a data request
throughout a distributed system.

• NetLogger makes it easy to modify distributed
applications to log interesting events at every critical
point in a distributed system.

• NetLogger also includes tools for host and network
monitoring.

♦ The approach is novel in that it combines network, host,
and application-level monitoring to provide a complete
view of the entire system

37 November 3, 1998
Brian L. Tierney
Future Technologies Group

NetLogger

♦ Logged events are correlated with system behavior to
characters the performance of the system during actual
operation

• facilitates bottleneck identification

♦ Using “life-lines” to visualize the data flow is the key to
easy interpretation of the results.

♦ We believe this type of monitoring is a critical
component to building reliable high performance data
intensive systems

38 November 3, 1998
Brian L. Tierney
Future Technologies Group

NetLogger

End Processing

Begin Processing

End Read

Begin Read

Request data
time

NetLogger Event “Life-lines”

E
ve

nt

39 November 3, 1998
Brian L. Tierney
Future Technologies Group

Netlogger Components

♦ Common log format

♦ Application libraries for generating NetLogger Messages
• Can send log messages to:

- file
- syslogd
- host/port (netlogd)

• C, C++ and Java are currently supported

♦ Event Visualization tools

♦ Management Agents

♦ Modified Unix network and OS monitoring tools to log
“interesting” events using the same log format

- netstat , vmstat , and tcpdump modified output results
in the NetLogger log format

40 November 3, 1998
Brian L. Tierney
Future Technologies Group

NetLogger

NetLogger log format:

We are using the IETF draft standard Universal Logger
Message (ULM) format:

• a list of “field=value” pairs
• required fields: DATE, HOST, PROG, and LVL

- LVL is the severity level (Emergency, Alert, Error,
Usage, etc.)

• followed by optional user defined fields

NetLogger adds these required fields:
• NL.EVNT, a unique identifier for the event being logged. i.e.:

DPSS_SERV_IN, VMSTAT_USER_TIME, NETSTAT_RETRANSSEG
• NL.SEC, and NL.USEC, which are the seconds and

microseconds from the Unix gettimeofday system call

41 November 3, 1998
Brian L. Tierney
Future Technologies Group

NetLogger

Sample NetLogger ULM event:
DATE=19980430133038 HOST=foo.lbl.gov
PROG=testprog LVL=Usage NL.EVNT=SEND_DATA
NL.SEC=893968238 NL.USEC=55784 SEND.SZ=49332

This says program named testprog on host foo.lbl.gov
performed event named SEND_DATA, size = 49332 bytes, at
the time given.

User-defined data elements (any number) are used to store
information about the logged event - for example:

NL.EVNT=SEND_DATA SEND.SZ=49332
- the number of bytes of data sent

NL.EVNT=NETSTAT_RETRANSSEGS NS.RTS=2
- the number of TCP retransmits since the previous

event

42 November 3, 1998
Brian L. Tierney
Future Technologies Group

NetLogger

NetLogger API:

Open calls:
NLhandle *lp = NULL;

/* log to a local file */
lp = NetLoggerOpen(NL_FILE, program_name, log_filename,
 NULL, 0);
/* log to syslog */
lp = NetLoggerOpen(NL_SYSLOG, program_name, NULL, NULL, 0);

/* log to “netlogd” on the specified host/port */
lp = NetLoggerOpen(NL_HOST, program_name, NULL, hostname,
 DPSS_NETLOGGER_PORT);
/* log to memory, then flush to host/port */
lp = NetLoggerOpen(NL_HOST_MEM, program_name, NULL, hostname,
 DPSS_NETLOGGER_PORT);

Write the log event:
 NetLoggerWrite(lp, "EVENT_NAME", "F1=%d F2=%d F3=%d
 F4=%.2f", data1, data2, string, fdata);

43 November 3, 1998
Brian L. Tierney
Future Technologies Group

NetLogger

Sample Code:
/* log to a local file */
lp = NetLoggerOpen(method, progname, log_filename, NULL, 0);

while (!done)
{
 NetLoggerWrite(lp, "EVENT_START", "TEST.SIZE=%d", size);

 /* perform the task to be monitored */
 done = do_something(data, size);

 NetLoggerWrite(lp, "EVENT_END");
}
NetLoggerClose(lp);

44 November 3, 1998
Brian L. Tierney
Future Technologies Group

NLV

NetLogger Visualization Tools

Exploratory, interactive analysis of the log data has proven
to be the most important means of identifying problems.

We have developed a tool called nlv (NetLogger
Visualization).

nlv functionality:
• can display several types of NetLogger events at once
• user configurable: which events to plot, and the type of plot

to draw (lifeline, load-line, or point)
• play, pause, rewind, slow motion, zoom in/out, and so on
• nlv can be run post-mortem, or in “real-time”

Other NetLogger tools to analyze log files:

• perl scripts to extract information from log files

• gnuplot to graph the results

45 November 3, 1998
Brian L. Tierney
Future Technologies Group

NLV

46 November 3, 1998
Brian L. Tierney
Future Technologies Group

NLV

47 November 3, 1998
Brian L. Tierney
Future Technologies Group

Network Time Protocol

♦ For NetLogger timestamps to be meaningful, all systems
clocks must be synchronized.

♦ NTP is used to synchronize time of all hosts in the
system.

• NTP is from Dave Mills, U. of Delaware
(http://www.eecis.udel.edu/~ntp/)

♦ Must have NTP running on one or more primary servers,
and on a number of local-net hosts, acting as secondary
time servers.

48 November 3, 1998
Brian L. Tierney
Future Technologies Group

NTP

♦ Purpose of NTP
• conveys timekeeping information from the primary servers

to other time servers via the Internet
• cross-checks clocks and mitigates errors due to equipment

or propagation failures

♦ Host time servers will synchronize via another peer time
server, based on the following timing values:
• those determined by the peer relative to the primary

reference source of standard time
• those measured by the host relative to the peer

♦ NTP provides not only precision measurements of offset
and delay, but also definitive maximum error bounds, so
that the user interface can determine not only the time,
but the quality of the time as well.

49 November 3, 1998
Brian L. Tierney
Future Technologies Group

Running NTP:

• All hosts run the xntpd daemon, which synchronizes
the clocks of each host both to GPS-based time servers
and to each other.

• This allows us to synchronize the clocks of all hosts to
within about 250 microseconds of each other, but...

- systems have to stay up for a significant length of
time for the clocks to converge to 250 µs

- best to have a time server on the same network as all
hosts

- many different sys admins (harder to synchronize
than clocks)

• In practice, clock synchronization of 1ms is good
enough

50 November 3, 1998
Brian L. Tierney
Future Technologies Group

 DPSS Monitoring Points

DPSS master/
name trnslate

Writer
(output to

net)

memory block cache

- recv blk list
- search cache

disk
reader

disk
reader

disk
reader

disk
reader

Client

request blks
receive

blks

TS-8TS-1
TS-0

TS-3

TS-5

TS-6

TS-4

TS-7

TS = time stamp

DPSS disk server

TS-2

DPSS
server

DPSS
server

START
from
other
disk

servers

51 November 3, 1998
Brian L. Tierney
Future Technologies Group

NetLogger Analysis of the DPSS

DPSS life-lines:

• each line represents the history of a data block as it
moves through the end-to-end path

• data requests are sent from the application every 200
ms (the nearly vertical lines starting at app_send
monitor point)

• initial single lines fan out as the request lists are
resolved into individual data blocks (server_in)

52 November 3, 1998
Brian L. Tierney
Future Technologies Group

NetLogger Analysis of the DPSS

♦ Analysis of the data block life-lines shows, e.g. (see next
figure):
A: if two lines cross in the area between start read and end

read, this indicates a read from one disk was faster than a
read from another disk

B: all the disks are the same type, the variation in read times
are due to differences in disk seek times

C: average time to move data from the memory cache into the
network interface is 8.65 ms

D: the average time in disk read queue is 5 ms
E: the average read rate from four disks is 8 MBy/sec
F: the average send rate (receiver limited, in this case) is 38.5

Mb/sec.
G: some requested data are found in the cache (were read from

disk, but not sent in previous cycle because arrival of new
request list flushes write queue)

53 November 3, 1998
Brian L. Tierney
Future Technologies Group

NetLogger Analysis of the DPSS

Two server, ATM LAN

app_send

master_in

master_out

server_in

start_read

end_read

start_write

app_receive

TCP_retrans

8000 8200

B: fast disk
read:
8 ms

C: 20 block average time to write
blocks to network:

8.65 ms

D: 20 block average time spent in
read queue: 5 ms

F: time for 20 blocks to get from one server
writer to the application reader

total: 204 ms, avg: 10.2 ms
38.5 Mb/sec

B: typical
disk read:

22 ms

Time (ms)

M
on

ito
rin

g
po

in
ts

“iss3.log”

“iss2.log”

G: cache hits
(zero read

time)

E: time to read 20 blocks from three disks
total:123 ms, avg: 6.15 ms
8 MBy/sec (63.7 Mb/sec)

A

net transit

name xlate

net transit

read queue

disk read

write queue

net transit

length of the

“pipeline” (≈ 60 ms)

(current servers are more than
twice this rate)

(current
value is

about 30ms)

54 November 3, 1998
Brian L. Tierney
Future Technologies Group

NetLogger Analysis of the DPSS

Two server, ATM LAN Event lifelines

server_in

start_read

end_read

read queue

disk read

and cache
search

four
parallel

disk reads
initiated

completion
of one read
triggers the
next one

B: fast disk read:
8 ms

B: typica
22fast

read

milliseconds

behavior of
one, specific
disk

55 November 3, 1998
Brian L. Tierney
Future Technologies Group

NetLogger Analysis of the DPSS

Other NetLogger Results: A DPSS scaling experiment:

• 10 clients accessing 10 different data sets
simultaneously

• show that all clients get an equal share of the DPSS
resources

56 November 3, 1998
Brian L. Tierney
Future Technologies Group

NetLogger Analysis of the DPSS

Correct operation of 10 parallel (simultaneous) processes reading 10 different data sets
from one DPSS (each row is one process, each group is a request for 10 Mbytes of data,

0
10

00
0

m
s

20
00

0
m

s
30

00
0

m
s

40
00

0
m

s
50

00
0

m
s

60
00

0
m

s

57 November 3, 1998
Brian L. Tierney
Future Technologies Group

A Case Study: TCP in the Early MAGIC Testbed

The Problem:

♦ DPSS and TerraVision were working well in a LAN
environment, but failing to deliver high (even medium!)
data rates to TerraVision when operated in the MAGIC
WAN.

♦ We suspected that the ATM switches were dropping
cells, but they reported no cell loss.

♦ Network engineers claimed that the network was working
“perfectly”. For testing they were using network
performance tools such at ttcp and netperf , which are
somewhat useful, but don’t model real distributed
applications, which are complex, bursty, and have more
than one connection in and/or out of a given host at one
time.

58 November 3, 1998
Brian L. Tierney
Future Technologies Group

MAGIC

Control test: 2 servers over ATM LAN

app send

master in

master out

server in

start read

end read

start write

app receive

TCP retrans

TV cache in

TV cache out

8000 8200 8400 8600 8800 9000 920

ev
en

t n
um

be
r

time (ms)

“iss3.log”

“iss2.log”

59 November 3, 1998
Brian L. Tierney
Future Technologies Group

MAGIC

♦ TerraVision image tiles are distributed across DPSS
servers on the MAGIC network at the following sites:

- EROS Data Center, Sioux Falls, SD;
- Sprint, Kansas City, MO;
- University of Kansas, Lawrence, KS;
- SRI, Menlo Park, CA;
- LBNL, Berkeley, CA

60 November 3, 1998
Brian L. Tierney
Future Technologies Group

MAGIC

MAGIC WAN experiment:

♦ Three disk server configuration DPSS gave the results
shown below:

♦ What was happening in this experiment is that TCP’s
normal ability to accommodate congestion is being
defeated by an unreasonable network configuration:
• the final ATM switch where the three server streams come together had a

per port output buffer of only about 13K bytes
• the network MTU (minimum transmission unit) is 9180 Bytes (as is typical

for ATM networks)
• three sets of 9 KBy IP packets were converging on a link with less than

50% that amount of buffering available, resulting in most of the packets
(roughly 65%) being destroyed by cell loss at the switch output port

The next generation of ATM switches (e.g.: Fore LC switch modules) had much
more buffering: 32K cells (1500 KB), and this problem went away.

61 November 3, 1998
Brian L. Tierney
Future Technologies Group

MAGIC

The MAGIC Network Performance Test Configuration

Ft. Leavenworth, KS

Lawrence, KS
Kansas City,

 KS

Sioux Falls, SD

Minneapolis, MN

X
Sprint
TIOC

OC-48

O
C

-1
2

O
C-12

OC-48

Sprint
SONET
Network 70

0
K

m
.

~1
5

m
s

la
te

nc
y

in
cl

ud
in

g
tw

o
AT

M
sw

itc
he

s

OC-48

ATM
switch

DPSS
(sender 3)

Receiver

DPSS
(sender 2)

DPSS
master

ATM
switch

NTP
server

DPSS
(sender 1)

NTP
server

ATM
switch

ATM
switch

62 November 3, 1998
Brian L. Tierney
Future Technologies Group

MAGIC

time (ms)
3,000 4,000 5,0001,000 2,0000

master in

app send

app receive

TCP retrans

master out

server in

start write

end read

start read

Three servers, ATM WAN, SS-10s as servers, tv_sim on SGI Onyx

“tvlog.edc”
“tvlog.uswest”

“tvlog.tioc”
“edc.serv_flush.log”

“tioc.serv_flush.log”

“uswest.serv_flush.log”
“edc.net.tcp.retrans.log”
“tioc.net.tcp.retrans.log”

“uswest.net.tcp.retrans.log”

63 November 3, 1998
Brian L. Tierney
Future Technologies Group

NetLogger Analysis of HENP Application

64 November 3, 1998
Brian L. Tierney
Future Technologies Group

 For more information see:

http://www-didc.lbl.gov/DPSS
http://www-didc.lbl.gov/NetLogger

